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Introduction

Our laboratory has long been interested in the process of apoptosis, a process of programmed cell

death that can be induced in response to aberrant proliferative signals and many anticancer agents.

As a consequence, disruption of apoptosis can lead to tumor progression and drug resistance. In

our original application, we proposed to study how apoptosis is executed and the implications of

disrupting components of the 'apoptotic machinery' on breast carcinogenesis. Interestingly,

senescence is an anti-proliferative program that has many parallels to apoptosis. First, senescence

is controlled by important tumor suppressors, including ARF, p53, p16, and Rb, and acts to

permanently limit cell proliferation. Second, various stimuli, including oncogenic ras and DNA

damage, can induce senescent phenotype, suggesting the existence of a common senescence

machinery that contributes to the irreversible nature of the arrest (1-3). Third, senescence

functions as an important brake to tumor development and contributes to the action of certain

cytotoxic anticancer agents. Together, these observations suggest that senescence parallels

apoptosis as an antitumor cellular response to stress. We hypothesize that this process is important

in breast cancer development and treatment responses.

As indicated above, senescence appears to involve the Rb and p53 tumor suppressor pathways.

Hence, as cells enter a senescent state, p53 and p16 accumulate, and Rb becomes

hypophosphorylated. In breast cancer, approximately 50 % of tumors show low or lack of p16

expression, and many have mutations in Rb or p53. It is also significant that cells derived from

mammary tissues almost always lose p16 expression when cultured in vitro (4). These

observations may be indicating a higher propensity of mammary cells compared to other cell types

to inactivate the senescence pathway by loss of p16.

For several reasons (see proposal body), we have abandoned our initial aims to produce mice with

defects the p53 effectors Caspase-9 and Apaf-1 to identify and characterize components of the

senescence machinery. Specifically, we are interested in how cells initiate and maintain the

senescent state, and the role of the p53 and pl6/Rb pathways in the process. Based on the

established involvement of p53, p16, and Rb in breast carcinogenesis, we hypothesize that cellular

senescence is an important mechanisms of tumor suppression that is disrupted during breast cancer

development. Moreover, our laboratory has recently shown that a senescence program controlled

by p53 and p16 contributes to the outcome of cancer therapy in tumors, and so insights into how
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senescence is initiated and maintained may have important implications for understanding drug

sensitivity and resistance in breast cancer, and may ultimately help identify better cancer therapies.

Although these experiments differ substantially from our initial proposal, they are conceptually

similar in that they are (i) guided by parallels between senescence to apoptosis; (ii) focused on the

terminal stage of this anti-proliferative program; (iii) directed towards uncovering new insights into

molecular mechanisms of tumor suppression and drug action. Our progress has been substantial,

and we are currently writing up the first study that we hope will have a large impact on the field.

Although details of our results will be discussed in the 'Body of the Annual Report', it is

noteworthy that we have implicated the HP1 proteins in the maintenance phase of senescence.

HP1o is down regulated in a substantial proportion of breast cancers (5), which provides additional

links between our studies and breast carcinogenesis. In short, we have based our transition from

work on apoptosis to senescence on exciting results, and believe our work is as relevant to breast

cancer (if not more) that the studies in our initial proposal.
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Body of Annual Report

The ultimate goal of our project is to find uncover the molecular mechanisms of tumor suppression

in breast cancer, which include apoptosis and cellular senescence mechanisms. The objectives

outlined in my research proposal were designed to elucidate the mechanism of the tumor

suppression through the p53-dependent apoptosis pathway, using a genetic approach. Specifically,

we proposed to generate conditional knockout mice of Apaf-1, which is downstream target of p53

pathway (6). However, we found that at least 2 groups already generated these mice, putting us at

a serious disadvantage. In addition, we obtained some extremely exciting results on the area of

cellular senescence. Therefore, we shifted the theme from apoptosis to cellular senescence.

Senescence was initially identified as a permanent form of cell cycle arrest that accompanied the

replicative exhaustion of human fibroblasts in culture. However, recent work from our laboratory

and elsewhere has shown that senescence is induced by many forms of cellular stress. By analogy

to apoptosis, we have been seeking the "common machinery" of cellular senescence. A large body

of evidence indicates that both the p53 and Rb tumor suppressor pathways contribute to cellular

senescence. Our laboratory and others reported that p53 is required for the induction of
'premature' senescence by oncogenic ras (1, 2, 7). However, p53 is not essential for maintaining

senescence (8). On the other hand, there are several lines of observation, which suggests the

involvement of epigenetic regulation of gene expression upon senescence (9). Furthermore, we

recently found that senescent human fibroblasts exhibit the condensed chromatin structure, which

shares heterochromatic features, and that the formation of these structures was strictly dependent on

the presence of an intact pl6/Rb pathway (Narita et al., in prep). Based on these findings, we

hypothesize that epigenetic determination of senescence-specific gene expression pattern may be

important for maintaining the stable growth arrest in senescence. Here we focus on our findings

so far about cellular senescence and further experimental plans.

Characterization of chromatin structure in senescent HDFs

IMR90s, human diploid fibroblasts (HDFs), induced to senesce by oncogenic Ras, as well as

replicative senescent fibroblasts, show a characteristic DAPI staining pattern, exhibiting condensed

DAPI-dense foci interspersed throughout the nucleus (Figure 1A). We have designated this as

SAHR, Senescence Associated Heterochromatic Regions, because it has heterochromatic features as

shown below. First we examined the relationship between SAHRs formation and senescent
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phenotype. We have found a close correlation between SAHRs formation and senescent markers

such as, cellular morphology and senescence- associated P3-galactosidase (SA-P3-gal) activity (Figure

1B). Furthermore, the adenoviral oncoprotein ElA, which overrides senescence, also inhibits

SAHRs formation completely. SAHRs are not found in quiescent cells, indicating SAHRs are not

consequence of cell cycle arrest. Taken together, these results indicate that SAHRs could be a new

marker of senescence.

To characterize SAHRs, we examined the components of SAHRs, and found that SAHRs are

heterochtomatic structure. First, HPl proteins, a family of heterochromatic adaptor molecules

involved in epigenetic gene regulation and supra-nucleosomal chromatin structure, colocalized with

SAHRs by immunostaining (Figure 2), suggesting that HP1 proteins are involved in SAHRs-

formation upon senescence. Interestingly, HPla is downregulated in a substantial proportion of

breast cancers (5). Next, acetylated histone H3 (K9/14), which is consistent with euchromatin,

was clearly excluded from SAHRs (Figure 3). Third, SAHRs colocalized with histone H3 Lys9

methylation (K9M), which provides a binding site for HP1 proteins contributing to proper assembly

of heterochromatin (10-12), but did not colocalize with H3 Lys4 methylation (K4M), which was

shown to be associated with active chromatin (13, 14) (Figure 3). Histone modification pattern of

SAHRs shown here is highly suggestive of transcriptinally inactive chromatin structure.

Heterochromatic features of SAHRs were further confirmed by electron microscopy.

Similar to DAPI staining, we identified the well-demarcated regions with relatively high electron

density, which is consistent with heterochromatin, in the nuclei of ras-senescent cells, but not in

vector control or low serum quiescent cells (Figure 4A-C). Immuno-gold labeling with anti-DNA

antibody showed DNA-enrichment in the SAHRs (Figure 4D). Consistently, RNase-gold labeling

revealed that RNA was absent from the SAHRs (Figure 4E).

Global level of acetylation of histone H3 was decreased in ras-senescent as well as

replicative senescent cells by Western blotting (Figure 5A), while quiescent cells did not show any

alterations in the level of H3 K9/14Ac (Figure 5A). ElA again prevented hypo-acetylation of H3

K9/14 in response to oncogenic ras. Consistently, chromatin bound fractions of HPI3 and

HPly were increased in ras-senescent cells compared to vector control and quiescent cells (Figure

5B). ElA abolished the accumulation of HP1 proteins in chromatin fractions in response to

oncogenic ras (Figure 5B). Together, these results indicate that oncogenic ras, as well as

replicative exhaustion induced distinct chromatin structure, which is a novel type of

heterochromatic structure. Furthermore, decrease in global level of H3 acetylation and increase in
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chromatin bound HPis in senescent cells suggest that eu- and heterochromatin redistribution may

associate with the process of senescence in human fibroblasts.

p16INK4a, which expression is shown to be low or missing in many human cancer cells,

including breast cancer, accumulates in senescent cells, and also can induce some features of

cellulare senescence (4, 14, 15). We asked if p16INK4a also induces SAHRs in IMR90s. p16INK4a

was introduced into IMR90s by retroviral-mediated gene transfer, followed by SA-P3-gal assay,

BrdU incorporation assay, and DAPI staining. Consistent with previous reports, p16IN1aa induced

the senescence phenotype, including SA-3-gal activity and low DNA synthesis (Figure 6A).

p16INK4a also induced SAHRs, which were indistinguishable from the nuclei of ras- or replicative

senescent cells (Figure 6B).

Regulation of SAHR formation and impact on senescent state

The data described above demonstrate that alterations in chromatin structure accompany

senescence. Recent work has suggested that these changes lead to the repression and/or silencing

of growth regulated genes (not shown). Moreover, the adenovirus E1A oncoprotein can interfere

with the induction of these structures in a manner that depends in its ability to inactivate Rb,

implying that an intact Rb pathway is required for the process. We are currently testing this

hypothesis directly using novel 'short-hairpin' RNAs. To this end, we are collaborating with Dr.

Greg Hannon (CSHL) to produce retroviral vectors capable of stably suppressing gene expression

in fibroblasts and breast epithelial cells. Our preliminary results suggest that this approach will be

successful at completely suppressing the expression of genes such as Rb and p 16.

Generation of HPI knockout mice

The putative role of HP1 proteins in maintaining senescence is consistent with a tumor

suppressor activity and, consistent with this view, HP1o• is not expressed in a subset of breast

cancers (5). In collaboration with Dr. Harald Von Melchner (University of Frankfurt), we have

obtained ES cells that that have insertional mutations in the HPlo• and HP1l3 genes. The HP1c-+/-

ES cells have produced chimeric mice and the HP1f3+/- cells have gone germline. We will use

these cells to study the role of HP1 in normal development and in cancer.

Future plans

1. Molecular mechanism of SAHR formation

To dissect the Rb/p16 and p53 pathway in the SAHRs formation, we will make the retroviral short
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hairpin RNAs (shRNA) to obtain the stable silencing. Candidate genes to be silenced include Rb,

p16, p53, and HPls. We will analyze the correlation between chromatin structure and phenotype,

or gene expression pattern.

2. Chromatin status in the specific genes

To obtain the direct evidence for the epigenetic regulation of gene expression, chromatin

immunoprecipitation (ChIP) analysis using antibody against Lys9/14 acetylated histone H3

(euchromatic marker), or Lys9 methylated H3 (heterochromatic marker) will be performed. We

will focus on the E2F-target genes, such as cyclin A and PCNA, which are essential for cellular

proliferation, and marker genes for senescence, such as stromelysin 1.

3. Analysis of mammary epithelial cells.

We will examine epithelial cells for SAHRs and senescence-associated epigenetic changes in gene

expression to determine the similarities and differences with fibroblasts. If substantial differences

are observed, we will focus on mammary epithelial cells owing to their increased relevance to

breast cancer.

4. In vivo models

The association between down regulation of HPla expression and metastatic phenotype of breast

cancer was recently reported. In parallel to our initial proposal on Apaf-1, we will generate mice

with targeted disruptions in HPIa and HP13 (and HP1y if possible). These animals will be

studied for spontaneous cancer formation, and crossed to standard models of breast carcinogenesis

(e.g. MMTV-ras).

Based on this Future Plan, new "Statement of Work" will be submitted separately.
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Key Accomplishments

"* Ras induced characteristic chromatin structure, SAHRs, which is indistinguishable from

replicative senescent cells in IMR90s.

"* SAHRs show close correlation with senescent phenotype.

"* SAHRs show heterochromatic features.

"* E 1A prevents SAHRs formation by ras in IMR90s.

"* p16INK4a also induced SAHRs.
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Reportable Outcomes

Poster and Abstact

Masashi Narita, Edith Heard, Stephen Hearn, Masako Narita, Scott Lowe; SAHR, a new marker of

senescence, which exhibit heterochromatic features (poster). 11 th International p53 Workshop,

Barcelona, Spain, May 15-19, 2002

Masashi Narita, Edith Heard, Stephen Hearn, Masako Narita, Scott Lowe; Higher order chromatin

structure and cellular senescence (poster). Cancer Genetics and Tumor Suppressor Genes, CSHL,

August 14-18, 2002
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Conclusion

We have found the novel type of heterochromatic structure (SAHRs) associated with senescence

phenotype in human fibroblasts. Rearrangement of chromatin structure is strongly suggestive of

the involvement of epigenetic regulation in senescence. One candidate pathway for SAHRs

formation is the p16/Rb pathway, at least in part, because EIA blocks the SAHRs and p16 is

sufficient to induce SAHRs. Other components of the process involve the HP 1 proteins, which

may ultimately lead to the silencing of growth related genes. Understanding the molecular

mechanism of SAHRs formation and the epigenetic regulation of the specific genes expression in

senescence are on ongoing and could contribute to elucidating the "common pathway" of cellular

senescence as the machinary of tumor suppression.
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Figure Legends

Figure 1. Senescence associated nuclear m6rphology in IMR90s

(A) IMR90s containing empty vector (V), H-RasV12 (Ras), or E1A12S/H-RasV12 (E/R) were

stained for SA-b-galactosidae activity, followed by DAPI staining, at day 6 postselection. Late

passage IMR90s (Sen) and quiescent cells prepared by low serum (LS) were also shown for

comparison. Enlarged images of DAPI staining were shown in the lower panels.

(B) Percentage of SA-[3-gal (left panel) and SAHR (right panel) positive cells at indicated days after

selection was scored in IMR90s containing empty vector (V) or H-RasV12 (R). DNA synthesis

was monitored by BrdU incorporation (middle panel) at the same time course.

Figure 2. HP1 proteins colocalize with SAHR

Colocalizatioin of GFP-fused HPcl• or endogenous HPls (HPlc, P3, and y) and SAHR by laser

scanning confocal microscopy. GFP-fused HPlcx was co-expressed with either empty vector (V)

or H-RasV12 (Ras) by retroviral gene transfer. Localization of endogenous HPls was determined

by indirect immunofluorescence using the respective antibodies in V, Ras, and replicative senescent

cells (Sen). DNA was stained with propidium iodide (PI).

Figure 3. Modification of histone H3 in senescent IMR90s

Confocal images of histone H3 Lysine 9/14 acetylation (K9/14Ac), Lysine 9 methylation (K9M),

and Lysine 4 methylation (K4M) by indirect immunofluorescene using rabbit polyclonal antibodies,

in IMR90s expressing empty vector (V) or H-RasV12 (Ras), as well as replicative senescent cells.

DNA was counter-stained by propidium iodide (PI).

Figure 4. DNA/RNA labeling in senescent nuclei of IMR90s

(A-C) Electron microscopy showed the similar condensed chromatin pattern as DAPI staining in

ras-senescent cells (Ras), but not in control vector (V) and low serum (LS) quiescent cells. DNA

was detected with monoclonal anti-DNA antibody using gold-coupled secondary antibody. (D)

Higher magnification view of SAHR in A was shown. (E) RNA was labeled with gold-coupled

RNase TI in the same magnification as D.

Figure 5. Global level of H3 acetylation or chromatin-bound HPls

(A) Downregulation of acetylated histone H3 in senescent cells. Equivalent amounts of

chromatin-enriched fraction (normalized by cell number) prepared from indicated cells were
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subjected to SDS-PAGE for acetylated H3 immunoblotting or Coomassie blue (CBB) staining. As

positive controls, young IMR90s were treated with HDAC-inhibitors, sodium butyrate (But; 5mM,

24h), or trichostatin A (TSA; 100ng/ml, 4h). Normal young IMR90s (N), low serum (LS), and

confluent cells (conf) were shown for comparison. (B) Representative immunofluorescent image

indicating different level of H3 acetylation between nuclei with and without SAHR. (C) Increased

level of chromatin-bound HPI 3/y in Ras-senescent cells. Chromatin-enriched fraction prepared

from the equal number of cells were subjected to Western blotting of HPlo, P3, and y. Orc2

Western blot and CBB staining served as loading controls.

Figure 6. p16 induces SAHRs in IMR90s

(A, B) IMR90s containing empty vector (V), p16 (p16), and both ElA and p16 (ElA/pl6) were

assessed for SA-b-galactosidae activity, DAPI staining, and DNA synthesis at day 4 postselection,

as in Figure 1.
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Abstract

11 th International p53 Workshop,

Title: SAHR, a new marker of senescence, which exhibit heterochromatic features

Masashi Narita, Edith Heard, Stephen Hearn, Masako Narita, Scott Lowe.

Cold Spring Harbor Laboratory

Human diploid fibroblasts (HDFs), such as IMR90s, enter an irreversible growth arrest after a

limited number of divisions in culture, known as replicative senescence. Oncogenic ras induces

premature senescence, which is phenotypically indistinguishable from replicative senescence.

Cellular senescence is accompanied by the accumulation of the tumor suppressors p53 and p16.

Both the p53 and p16/Rb pathways must be circumvented for HDFs to escape from senescence.

While characteristic morphological changes in senescent human fibroblasts are well known,

the nuclear morphology of senescent cells is poorly characterized. Ras-induced senescent IMR90s,

as well as replicative senescent fibroblasts, show a characteristic DAPI staining pattern, which we

have designated as SAHR, Senescence Associated Heterochromatic Regions. We have found a

close correlation between SAHR formation and senescnece markers such as, accumulation of

p53/p16 and senescence-associated P3-galactosidase activity. Furthermore, the adenoviral

oncoprotein ElA, which overrides senescence, also inhibits SAHR formation, and SAHRs are not

found in quiescent cells. Taken together, these results indicate that SAHRs are a marker of

senescence.

Immunofluorescence studies reveal that SAHRs colocalize with markers of

heterochromatin, such as HP1 (heterochromatin protein 1) and Lysine 9 methyled histone H3. In

contrast, lysine 9/14 acetylation and lysine 4 methylation of histone H3, which are consistent with

euchromatin, are excluded from SAHRS. Electronmicrography confirms similar heterochromatic

structures in senescent cells, where DNA is condensed and RNA is absent. Colocalization studies

have excluded regions of constitutive heterochromatin, centromere and telomere, as being part of

the SAHR, suggesting that SAHRs are a novel type of heterochromatic structure. Given the fact

that the levels of acetylated histone H3 are downregulated in senescent cells, our data suggest a

global rearrangement of chromatin structure during senescence. If this is true, it could provide a

specific gene expression pattern particular to senescence.
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Abstract

Cancer Genetics and Tumor Suppressor Genes

Poster

HIGHER ORDER CHROMATIN STRUCTURE AND CELLULAR SENESCENCE

Masashi Narita, *Edith Heard, Stephen Hearn, Masako Narita, Scott Lowe

Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724

*Present address; Centre National de la Recherche scientifique UMR 218, Curie Institute

Human diploid fibroblasts (HDFs), such as IMR90s, enter an irreversible growth arrest after a

limited number of divisions in culture, known as replicative senescence. Oncogenic ras induces

premature senescence, which is phenotypically indistinguishable from replicative senescence.

Cellular senescence is accompanied by the accumulation of the tumor suppressors p53 and p16.

Both the p53 and p16/Rb pathways must be circumvented for HDFs to escape from senescence.

While characteristic morphological changes in senescent human fibroblasts are well known,

the nuclear morphology of senescent cells is poorly characterized. Ras-induced senescent IMR90s,

as well as replicative senescent fibroblasts, show a characteristic DAPI staining pattern, which we

have designated as SAHR, Senescence Associated Heterochromatic Regions. We have found a

close correlation between SAHR formation and senescence markers such as, accumulation of

p53/p16 and senescence-associated f3-galactosidase activity. Furthermore, the adenoviral

oncoprotein E1A, which overrides senescence, also inhibits SAHR formation, and SAHRs are not

found in quiescent cells. Taken together, these results indicate that SAHRs are a marker of

senescence.

Immunofluorescence studies reveal that SAHRs colocalize with markers of

heterochromatin, such as HPl (heterochromatin protein 1) and Lysine 9 methyled histone H3. In

contrast, lysine 9/14 acetylation and lysine 4 methylation of histone H3, which are consistent with

euchromatin, are excluded from SAHRs. Electronmicrography confirms similar heterochromatic

structures in senescent cells, where DNA is condensed and RNA is absent. Colocalization studies

have excluded regions of constitutive heterochromatin, centromere and telomere, as being part of

the SAHR, suggesting that SAHRs are a novel type of heterochromatic structure. Given the fact

that the levels of acetylated histone H3 are downregulated in senescent cells, our data suggest a

global rearrangement of chromatin structure during senescence. We propose that these alterations

produce a characteristic gene expression pattern particular to senescence.
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